If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+3x-675=0
a = 4; b = 3; c = -675;
Δ = b2-4ac
Δ = 32-4·4·(-675)
Δ = 10809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10809}=\sqrt{9*1201}=\sqrt{9}*\sqrt{1201}=3\sqrt{1201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{1201}}{2*4}=\frac{-3-3\sqrt{1201}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{1201}}{2*4}=\frac{-3+3\sqrt{1201}}{8} $
| 7. 5(3.2x–3)=2(x–4) | | 10−2m=-m | | 1=-3z+16 | | 2d+6=30 | | 17m-12m=20 | | x+x*0.165=47000 | | 2(-3x+4)=8 | | z=1=- | | 0.2x=625+0.1x | | d/3-6=1 | | 6.3g+7=4.3g+15 | | 6v−10=7v | | -2z=9−z | | 8+3n=18-2n | | 4x+12+5x-20=180 | | t/6+-15=-8 | | -9p−10=-10p | | 11x-10+12=-3+30 | | 4h+10=-6h | | -10g−8=-8g | | n/8+43=46 | | 8-3x=120= | | 19+4m=99 | | 11x-98=6x+10 | | 5(-1+x)=-10 | | 4x-6=2×+5 | | p-45/9=5 | | -5k+3=-18+2k | | u+9/5=4 | | -5w-14=-3w-12 | | 12x+3=12x+5 | | -5r=-3r−4 |